Review article
Physics and astronomy
Large-scale, ordered and tunable Majorana-zero-mode lattice in iron-based superconductors
DOI: https://doi.org/10.61109/cs.202602.165
Coshare Science 04, 03 | Published 15 February 2026 |
Cite this article
Copy
H.-J. Gao, Large-scale, ordered and tunable Majorana-zero-mode lattice in iron-based superconductors, Coshare Science 04, 03 (2026).
Abstract

Majorana zero modes (MZMs) are spatially-localized zero-energy fractional quasiparticles with non-Abelian braiding statistics. They are believed to hold great promise for topological quantum computing. By using low-temperature and strong-magnetic-field scanning tunneling microscopy/spectroscopy, a breakthrough of Majorana zero mode has been firstly achieved in a single material platform of high-Tc iron-based superconductor, FeTe0.55Se0.45. The mechanism of two distinct classes of vortices presented in this system was revealed, which directly tied with the presence or absence of zero-bias peak. We further found the Majorana conductance plateau in vortices. Both the extrinsic instrumental convoluted broadening and the intrinsic quasiparticle poisoning can reduce the conductance plateau value, and when extrinsic instrumental broadening is removed by deconvolution, the plateau nearly reaches a 2e2/h quantized value. Moreover, we confirmed the existence of MZMs in the vortex cores of CaKFe4As4 and LiFeAs. Based on these works mentioned above, most recently, we have successfully achieved the large-scale, highly-ordered and tunable MZM lattice in strained LiFeAs. Notably, more than 90% of the vortices are topological and possess the characteristics of isolated MZMs at the vortex center, forming ordered MZM lattice with the density and the geometry tunable by external magnetic field. With decreasing the spacing of neighboring vortices, the MZMs start to couple with each other. Our results show a great potential of MZMs in the application of topological quantum computations in the future.

Keywords
iron-based superconductors
vortex
Majorana zero modes
topological quantum computation
Background
watch this part

Pure MZMs in vortex cores
watch this part

Half-integer level shift of core states
watch this part

Nearly quantized Majorana conductance plateau
watch this part

Observation of MZMs in iron pnitides
watch this part

Summary
watch this part

Declarations
The author declares no competing interests.
Acknowledgements

We gratefully acknowledge helpful discussions with our collaborators. Genda Gu (BNL), Changqing Jin (IOP, CAS), and Haitao Yang (IOP, CAS) provided high-quality single-crystal samples. Hong Ding (SJTU) carried out the ARPES measurements. Geng Li, Hui Chen, Shiyu Zhu, and Li Huang performed the STM/STS measurements. Ziqiang Wang (BC) and Liang Fu (MIT) contributed valuable theoretical insights.

References

1. D.F. Wang, L.Y. Kong, P. Fan, H. Chen, S.Y. Zhu, W.Y. Liu, L. Cao, Y.J. Sun, S.X. Du, J. Schneeloch, R.D. Zhong, G.D. Gu, L. Fu, H. Ding, and H.-J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362, 333 (2018). 
2. L.Y. Kong, S.Y. Zhu, M. Papaj, H. Chen, L. Cao, H. Isobe, Y.Q. Xing, W.Y. Liu, D.F. Wang, P. Fan, Y.J. Sun, S.X. Du, J. Schneeloch, R.D. Zhong, G.D. Gu, L. Fu, H.-J. Gao, and H. Ding, Half-integer level shift of vortex bound states in an iron-based superconductor, Nat. Phys. 15, 1181 (2019). 
3. S.Y. Zhu, L.Y. Kong, L. Cao, H. Chen, M. Papaj, S.X. Du, Y.Q. Xing, W.Y. Liu, D.F. Wang, C.M. Shen, F.Z. Yang, J. Schneeloch, R.D. Zhong, G.D. Gu, L. Fu, Y.-Y. Zhang, H. Ding, and H.-J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367, 189 (2020). 
4. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, and L.P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336, 1003 (2012). 
5. S.N. Perge, I.K. Drozdov, J. Li, H. Chen, S.J. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346, 602 (2014). 
6. J.-P. Xu, M.-X. Wang, Z.L. Liu, J.-F. Ge, X.J. Yang, C.H. Liu, Z.A. Xu, D.D. Guan, C.L. Gao, D. Qian, Y. Liu, Q.-H. Wang, F.-C. Zhang, Q.-K. Xue, and J.-F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114, 017001 (2015). 
7. H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang, H.-Y. Ma, Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li, C.H. Liu, D. Qian, Y. Zhou, L. Fu, S.-C. Li, F.-C. Zhang, and J.-F. Jia, Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116, 257003 (2016). 
8. Z.J. Wang, P. Zhang, G. Xu, L.K. Zeng, H. Miao, X.Y. Xu, T. Qian, H.M. Weng, P. Richard, A.V. Fedorov, H. Ding, X. Dai, and Z. Fang, Topological nature of the FeSe0.5Te0.5 superconductor, Phys. Rev. B 92, 115119 (2015). 
9. P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z.J. Wang, J.S. Wen, G.D. Gu, H. Ding, and S. Shin, Observation of topological superconductivity on the surface of an iron-based superconductor, Science 360, 182 (2018).  
10. P. Zhang, Z.J. Wang, X.X. Wu, K. Yaji, Y. Ishida, Y. Kohama, G.Y. Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo, K. Okazaki, K. Kindo, X.C. Wang, C.Q. Jin, J.P. Hu, R. Thomale, K. Sumida, S.L. Wu, K. Miyamoto, T. Okuda, H. Ding, G.D. Gu, T. Tamegai, T. Kawakami, M. Sato, and S. Shin, Multiple topological states in iron-based superconductors, Nat. Phys. 15, 41 (2019). 
11. K.T. Law, P.A. Lee, and T.K. Ng, Majorana fermion induced resonant Andreev reflection, Phys. Rev. Lett. 103, 237001 (2009). 
12. M. Li, G. Li, L. Cao, X.T. Zhou, X.C. Wang, C.Q. Jin, C.-K. Chiu, S.J. Pennycook, Z.Q. Wang, and H.-J. Gao, Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs, Nature 606, 890 (2022). 
13. W.Y. Liu, L. Cao, S.Y. Zhu, L.Y. Kong, G.W. Wang, M. Papaj, P. Zhang, Y.-B. Liu, H. Chen, G. Li, F.Z. Yang, T. Kondo, S.X. Du, G.-H. Cao, S. Shin, L. Fu, Z.P. Yin, H.-J. Gao, and H. Ding, A new Majorana platform in an Fe-As bilayer superconductor, Nat. Commun. 11, 5688 (2020). 
14. Q. Liu, C. Chen, T. Zhang, R. Peng, Y.-J. Yan, C.-H.-P. Wen, X. Lou, Y.-L. Huang, J.-P. Tian, X.-L. Dong, G.-W. Wang, W.-C. Bao, Q.-H. Wang, Z.-P. Yin, Z.-X. Zhao, and D.-L. Feng, Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe, Phys. Rev. X 8, 041056 (2018). 
15. L.Y. Kong, L. Cao, S.Y. Zhu, M. Papaj, G.Y. Dai, G. Li, P. Fan, W.Y. Liu, F.Z. Yang, X.C. Wang, S.X. Du, C.Q. Jin, L. Fu, H.-J. Gao, and H. Ding, Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor, Nat. Commun. 12, 4146 (2021).
16. L. Cao, W.Y. Liu, G. Li, G.Y. Dai, Q. Zheng, Y.X. Wang, K. Jiang, S.Y. Zhu, L. Huang, L.Y. Kong, F.Z. Yang, X.C. Wang, W. Zhou, X. Lin, J.P. Hu, C.Q. Jin, H. Ding, and H.-J. Gao, Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs, Nat. Commun. 12, 6312 (2021). 
17. P. Fan, F.Z. Yang, G.J. Qian, H. Chen, Y.-Y. Zhang, G. Li, Z.H. Huang, Y.Q. Xing, L.Y. Kong, W.Y. Liu, K. Jiang, C.M. Shen, S.X. Du, J. Schneeloch, R.D. Zhong, G.D. Gu, Z.Q. Wang, H. Ding, and H.-J. Gao, Observation of magnetic adatom-induced Majorana vortex and its hybridization with field-induced Majorana vortex in an iron-based superconductor, Nat. Commun. 12, 1348 (2021). 

Rights and permissions
Open Access This video article (including but not limited to the video presentation, related slides, images and text manuscript) is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Comments
Comment