1. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.J. Bungartz, C. Felser, M. Greiner, A. Groß, C.T. Koch, K. Kremer, W.E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl, FAIR data enabling new horizons for materials research, Nature 604, 635 (2022).
2. T.A.R. Purcell, M. Scheffler, L.M. Ghiringhelli, and C. Carbogno, Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence, npj Comput. Mater. 9, 112 (2023).
3. F. Knoop, T.A.R. Purcell, M. Scheffler, and C. Carbogno, Anharmonicity in thermal insulators: an analysis from first principles, Phys. Rev. Lett. 130, 236301 (2023).
4. F. Knoop, M. Scheffler, and C. Carbogno, Ab initio Green-Kubo simulations of heat transport in solids: method and implementation, Phys. Rev. B 107, 224304 (2023).
5. D.L. Perry, Handbook of Inorganic Compounds (CRC Press, 2016).
6. A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in Brillouin zones, Phys. Rev. B 91, 094306 (2015).
7. F. Knoop, T.A.R. Purcell, M. Scheffler, and C. Carbogno, Anharmonicity measure for materials, Phys. Rev. Mater. 4, 083809 (2020).
8. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L.M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates, Phys. Rev. Mater. 2, 083802 (2018).
9. M. Boley, F. Luong, S. Teshuva, D.F. Schmidt, L. Foppa, and M. Scheffler, From prediction to action: critical role of performance estimation for machine-learning-driven materials discovery, arXiv:2311.15549 (2023).
10. B.R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, and L.M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery. New J. Phys. 19, 013031 (2017).
11. L. Foppa, L.M. Ghiringhelli, F. Girgsdies, M. Hashagen, P. Kube, M. Hävecker, S.J. Carey, A. Tarasov, P. Kraus, F. Rosowski, R. Schlögl, A. Trunschke, and M. Scheffler, Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence. MRS Bull. 46, 1016 (2021).
12. L. Foppa, C. Sutton, L.M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler, Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence, ACS Catal. 12, 2223 (2022).