Review article
Physics and astronomy
Quantum statistical mechanics of the SYK model, charged black holes, and strange metals
Coshare Science 01, 04 | Published 10 December 2023 | DOI: https://doi.org/10.61109/cs.202311.119
Cite this article
Copy
S. Sachdev, Quantum statistical mechanics of the SYK model, charged black holes, and strange metals, Coshare Science 01, 04 (2023).
Abstract

The Sachdev-Ye-Kitaev model provides a solvable theory of entangled many-particle quantum states without quasiparticle excitations. I will describe how its solution has led to an understanding of the universal structure of the low energy density of states of charged black holes, and to realistic and universal models of strange metals.

Keywords
quasiparticles
strange metals
non-Fermi liquids
superconductors
black holes
entropy
Declarations
The author declares no competing interests.
References

1. P. Giraldo-Gallo, J.A. Galvis, Z. Stegen, K.A. Modic, F.F. Balakirev, J.B. Betts, X. Lian, C. Moir, S.C. Riggs, J. Wu, A.T. Bollinger, X. He, I. Božović, B.J. Ramshaw, R.D. McDonald, G.S. Boebinger, and A. Shekhter, Scale-invariant magnetoresistance in a cuprate superconductor, Science 361, 479 (2018). 

2. G. Grissonnanche, Y.W. Fang, A. Legros, S. Verret, F. Laliberte, C. Collignon, J.S. Zhou, D. Graf, P.A. Goddard, L. Taillefer, and B.J. Ramshaw, Linear-in temperature resistivity from an isotropic Planckian scattering rate, Nature 595, 667 (2021). 

3. S. Sachdev and J.W. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993). 

4. A. Kitaev, A simple model of quantum holography, talk given at KITP program: entanglement in strongly-correlated quantum matter, University of California, Santa Barbara (2015). (unpublished)

5. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Random-matrix physics: spectrum and strength fluctuations, Rev. Mod. Phys. 53, 385 (1981). 

6. S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015). 

7. O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59, 5341 (1999). 

8. A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001). 

9. J.S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S.H. Shenker, D. Stanford, A.  Streicher, and M. Tezuka, Black holes and random matrices, J. High Energ. Phys. 2017, 118 (2017). 

10. Y.F. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev model, J. High Energ. Phys. 2020, 157 (2020). 

11. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7, 2333 (1973). 

12. S.W. Hawking, Black hole explosions? Nature 248, 30 (1974). 

13. C.V. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature 227, 936 (1970). 

14. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752 (1977). 

15. A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60, 064018 (1999). 

16. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010). 

17. T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D 83, 125002 (2011). 

18. M. Čubrović, J. Zaanen, and K. Schalm. String theory, quantum phase transitions and the emergent Fermi-liquid. Science 325, 439 (2009). 

19. J. Maldacena, D. Stanford, and Z.B. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Prog. Theor. Exp. Phys. 2016, 12C104 (2016). 

20. L.V. Iliesiu, S. Murthy, and G.J. Turiaci, Revisiting the logarithmic corrections to the black hole entropy, arXiv: 2209.13608 (2022). 

21. D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev-Ye-Kitaev models and beyond: window into non-Fermi liquids, Rev. Mod. Phys. 94, 035004 (2022). 

22. M. Heydeman, L.V. Iliesiu, G.J. Turiaci, and W.L. Zhao, The statistical mechanics of near-BPS black holes, J. Phys. A: Math. Theor. 55, 014004 (2021). 

23. A.A. Patel, H.Y. Guo, I. Esterlis, and S. Sachdev, Universal theory of strange metals from spatially random interactions, Science 381, 790 (2023).  

24. W.B. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95, 026009 (2017). 

25. J. Murugan, D. Stanford, and E. Witten, More on supersymmetric and 2d analogs of the SYK model, J. High Energ. Phys. 2017, 146 (2017). 

26. A.A. Patel and S. Sachdev, Critical strange metal from fluctuating gauge fields in a solvable random model, Phys. Rev. B 98, 125134 (2018). 

27. E. Marcus and S. Vandoren, A new class of SYK-like models with maximal chaos, J. High Energ. Phys. 2019, 166 (2019). 

28. Y.X. Wang, Solvable strong-coupling quantum-dot model with a non-Fermi-liquid pairing transition, Phys. Rev, Lett. 124, 017002 (2020). 

29. I. Esterlis and J. Schmalian, Cooper pairing of incoherent electrons: an electron-phonon version of the Sachdev-Ye-Kitaev model, Phys. Rev. B 100, 115132 (2019). 

30. Y.X. Wang and A.V. Chubukov, Quantum phase transition in the Yukawa-SYK model, Phys. Rev. Res. 2, 033084 (2020). 

31. Y.H. Zhang and S. Sachdev, From the pseudogap metal to the Fermi liquid using ancilla qubits, Phys. Rev. Res. 2, 023172 (2020). 

32. Y.H. Zhang and S. Sachdev, Deconfined criticality and ghost Fermi surfaces at the onset of antiferromagnetism in a metal, Phys. Rev. B 102, 155124 (2020). 

33. P.A. Lee, Gauge field, Aharonov-Bohm flux, and high-Tc superconductivity, Phys. Rev. Lett. 63, 680 (1989). 

34. S.A. Hartnoll, P.K. Kovtun, M. Muller, and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76, 144502 (2007). 

35. D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Resistivity of a non-Galilean–invariant Fermi liquid near Pomeranchuk quantum criticality, Phys. Rev. Lett. 106, 106403 (2011). 

36. S.A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev, Transport near the Ising-nematic quantum critical point of metals in two dimensions, Phys. Rev. B 89, 155130 (2014). 

37. A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling violation at the Ising-nematic quantum critical point in two-dimensional metals, Phys. Rev. B 94, 045133 (2016). 

38. Y.B. Kim, A. Furusaki, X.G. Wen, and P.A. Lee, Gauge-invariant response functions of fermions coupled to a gauge field, Phys. Rev. B 50, 17917 (1994). 

39. H.Y. Guo, A.A. Patel, I. Esterlis, and S. Sachdev, Large-N theory of critical Fermi surfaces. II. Conductivity, Phys. Rev. B 106, 115151 (2022). 

40. Z.D. Shi, D.V. Else, H. Goldman, and T. Senthil, Loop current fluctuations and quantum critical transport, SciPost Phys. 14, 113 (2023). 

41. H.Y. Guo, D. Valentinis, J. Schmalian, S. Sachdev, and A.A. Patel, Cyclotron resonance and quantum oscillations of critical Fermi surfaces, arXiv: 2308.01956 (2023). 

42. W.O. Tromp, T. Benschop, J.F. Ge, I. Battisti, K.M. Bastiaans, D. Chatzopoulos, A.H.M. Vervloet, S. Smit, E. van Heumen, M.S. Golden, Y.K. Huang, T. Kondo, T. Takeuchi , Y. Yin, J.E. Hoffman, M.A. Sulangi, J. Zaanen, and M.P. Allan, Puddle formation and persistent gaps across the non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+δ, Nat. Mater. 22, 703 (2023). 

43. E.E. Aldape, T. Cookmeyer, A.A. Patel, and E. Altman, Solvable theory of a strange metal at the breakdown of a heavy Fermi liquid, Phys. Rev. B 105, 235111 (2022). 

44. S.A. Hartnoll and A.P. MacKenzie, Colloquium: Planckian dissipation in metals, Rev. Mod. Phys. 94, 041002 (2002). 

45. E. van Heumen, X.B. Feng, S. Cassanelli, L. Neubrand, L. de Jager, M. Berben, Y.K. Huang, T. Kondo, T. Takeuchi, and J. Zaanen, Strange metal electrodynamics across the phase diagram of Bi2−xPbxSr2−yLayCuO6+δ cuprates, Phys. Rev. B 106, 054515 (2022). 

46. B. Michon, C. Berthod, C.W. Rischau, A. Ataei, L. Chen, S. Komiya, S. Ono, L. Taillefer, D. van der Marel, and A. Georges, Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat, Nat. Commun. 14, 3033 (2023). 

47. T.J. Reber, X. Zhou, N.C. Plumb, S. Parham, J.A. Waugh, Y. Cao, Z. Sun, H. Li, Q. Wang, J.S. Wen, Z.J. Xu, G. Gu, Y. Yoshida, H. Eisaki, G.B. Arnold, and D.S. Dessau, A unified form of low-energy nodal electronic interactions in hole-doped cuprate superconductors, Nat. Commun. 10, 5737 (2019). 

48. S. Sachdev, Quantum statistical mechanics of the Sachdev-Ye-Kitaev model and charged black holes, arXiv: 2304.13744 (2023).

49. S. Sachdev, Quantum statistical mechanics of the Sachdev-Ye-Kitaev model and strange metals, arXiv: 2305.01001 (2023).

Rights and permissions
Open Access This video article (including but not limited to the video presentation, related slides, images and text manuscript) is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Comments
Comment
Sections